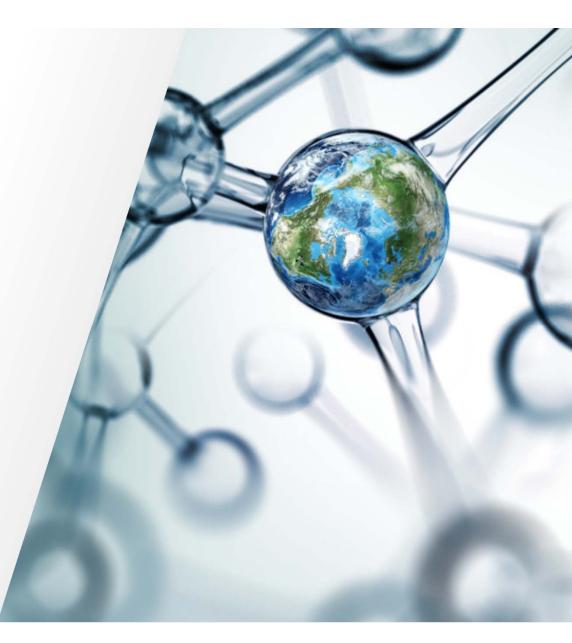
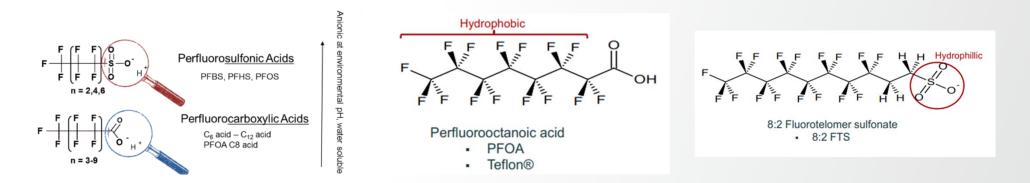
Thermo Fisher S C I E N T I F I C

Extraction of Long-Chain PFAS from Soil using Accelerated Solvent Extraction (ASE)


Chris Shevlin – Thermo Fisher Scientific chris.shevlin@thermofisher.com

Collaboration with Matthew MacLennan at Pacific Rim Laboratories

2021 NEMC Bellevue, WA


1 Proprietary & Confidential | chris.shevlin@thermofisher.com | 6-August -2021

Background

- PFAS = Per- and Poly- Fluorinated Alkyl Substances
- Class of structurally similar compounds
- · Hydrophobic C-F chain of various lengths with hydrophilic functional group on the end
- Shorter carbon chains \rightarrow More water soluble
- Longer carbon chain \rightarrow Less water soluble

>6000 varieties compared to 209 PCB congeners

Individual PFAS molecule is determined by chain length and functional group

PFAS are carried by water through soil systems

Short chain PFAS are more water soluble

 "Incorporated into the soil matter"

Where are the Long-chain PFAS?

- "stuck in the pores"
- "Run-off"

3 Proprietary & Confidential | chris.shevlin@thermofisher.com | 6-August -2021

Spiking Studies

Spike samples only

- Spike soil with PFAS
- Sonicate or vortex in MeOH
- ~100% recovery!
- Spiked PFAS are "on" the soil particles (Lightly Bound)

Spike and sit samples

- Spike soil with PFAS
- Let the soil sit and dry over a weekend
- PFAS has time to migrate into the soil

Two Sample Prep Methods

Sonication and Vortex

- Sonicate soil sample (2-10 g) in 100% Methanol
- Filter particulates
- SPE if needed for clean-up

"Previously, we reported unsatisfactory (0–50%) recovery of long-chain PFAS from soil using vortex/sonication" Matthew MacLennan at Pacific Rim Laboratories

 Automated sample prep with Accelerated Solvent Extraction

The Principles of Accelerated Solvent Extraction

How does accelerated solvent extraction help sample preparation?

6 Proprietary & Confidential | chris.shevlin@thermofisher.com | 6-August -2021

ThermoFisher SCIENTIFIC

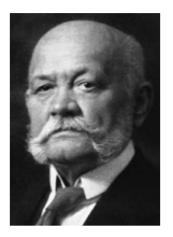
The Challenge for Analysis

I.5 mL GC / LC Vial

How do we get analytes out of these samples?

The Important Parameters for Sample Prep

- Solvent Use
 - Amount of solvent consumed for the extraction
 - · Solvents are expensive; reducing use reduces costs
- Extraction Time
 - Amount of time required for each extraction to occur
 - Reducing extraction time increases lab throughput
- % Recovery
 - Amount of analyte recovered following the extraction
 - · Low % recovery yields poor analytical results
- % Relative Standard Deviation (RSD)
 - Measure of reproducibility between extractions
 - Extraction results have greater reproducibility with lower %RSDs


These Parameters Evaluate SP Techniques

Important Parameters for Liquid-Solid Extraction

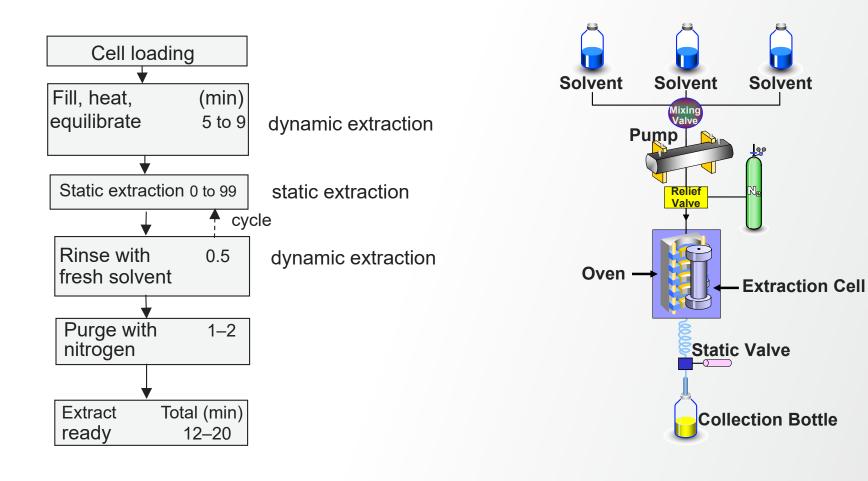
Parameter	Effect on the Extraction Process		
Temperature	Elevated temperature increases analyte		
	diffusion from the matrix and improves		
	analyte solubility in the extraction solvent.		
Pressure	Increased pressure enables liquid solvents to		
	be used at high temperature.		
Analyte Solubility	Increases as temperature increase to improve		
	extraction efficiency (e.g. solubility of		
	anthracene increases 13-fold in DCM (50°C		
	to 150°C)).		
Solvent Viscosity	Decreases as temperature increases.		
	Improves solvent migration through the matrix		
	to increase extraction efficiency.		
Solvent Surface Tension	Decreases as temperature increases. Allows		
	solvent to better coat the matrix and helps		
	improve analyte diffusion.		

In the Beginning There Was Soxhlet...

Franz von Soxhlet (1848 – 1926)

de facto standard for solvent extraction

Slow, high solvent usage


Now . . . Accelerated Solvent Extraction

- Automates sample preparation for solid and semisolid samples using solvents at elevated temperatures and pressure.
- Operates above the boiling point of extraction solvents by using sealed extraction cells.
- pH Hardened pathways allows use of strong acids and bases for sample pretreatment
- Well established and proven technique that is superior to Soxhlet and approved for U.S. EPA Method 3545A.

Thermo Scientific[™] Dionex[™] ASE[™] 350 Accelerated Solvent Extractor system

How Does Accelerated Solvent Extraction Work?

Global Industries Using ASE


Water Treatment Plants

Contract Laboratories

Government Agencies

UNC

World Natural Care

Natural Products

the nature network®

PhytoLab

UNOVARTIS Biotech/Pharmaceutical

Food and Beverage

International Agency Acceptance of ASE 350

United States

U.S. EPA Method 3545A (OCP, OPP, BNA, TPH, PCDD, herbicides and semi-volatiles)

- U.S. EPA Method 8267 (Toxaphene)
- U.S. EPA Method 6860 (Perchlorate)

NOAA Method NWFS-NWFSC-59 (Hydrocarbons)

ASTM D-7210 (Polymer Additives)

China

Method GB/T 19649-2006 for 475 pesticides in grains and grain products

Method GB/T 23376-2009, pesticides in tea leaves

Method GB/T22996-2008, ginsenosides in ginseng

National Standard NMX-AA-146-SCFI-2008 for PAHs in soils and sediments

Method L00.00-34 for pesticides in foodstuffs

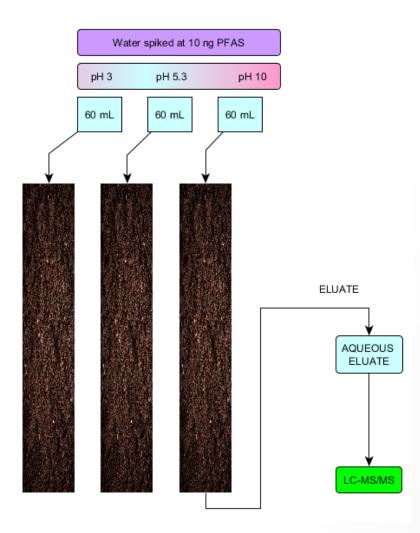
Accelerated Solvent Extraction (ASE)

- Extraction Conditions
- Extraction Solvent: Methanol

- Temperature: 100 °C
- Pressure: 1600 psi
- Heat Time: 5 min
- Static Time: 5 min
- Flush Volume: 70%
- Purge Time: 120 s
- Static Cycles: 3
- Total Extraction Time: 25 min per sample

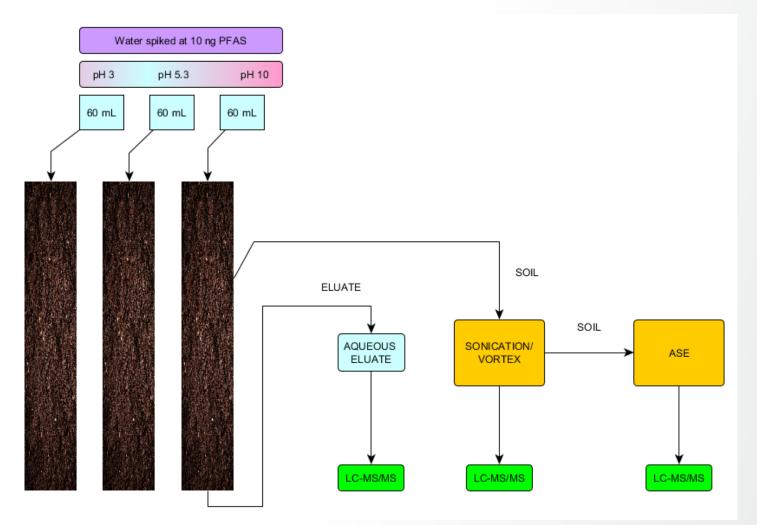
Instrumentation

Thermo Fisher Scientific[™] Vanquish[™] HPLC System with


PFC Free Kit

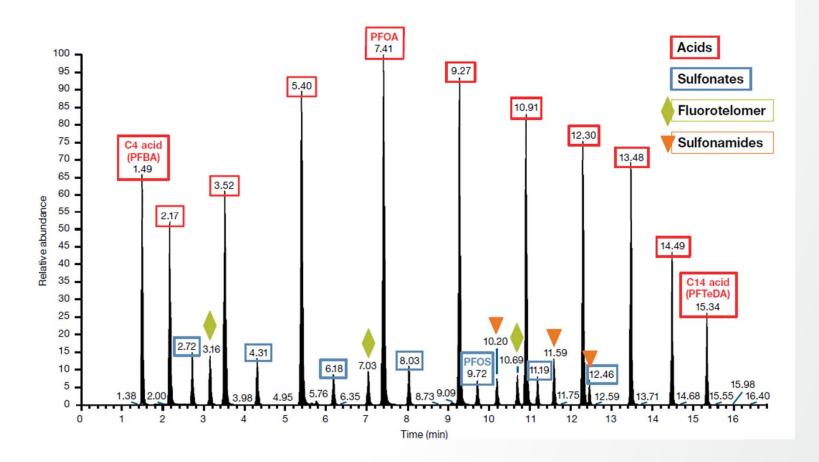
Thermo Fisher Scientific[™] TSQ Quantis[™] Mass Spectrometer

Extraction Efficiency Experiment


ThermoFisher SCIENTIFIC

Extraction Efficiency Experiment

Water spiked at 10 ng PFAS pH 3 pH 5.3 pH 10 60 mL 60 mL 60 mL SOIL ELUATE AQUEOUS SONICATION/ ELUATE VORTEX LC-MS/MS LC-MS/MS


Extraction Efficiency Experiment

Sequential Extractions of PFAS from Soil

	% RE0						,	
			AFTER					
			AQU	IEOUS	SONIC/			
		ng spiked	ELL	JATE	VOR	TEX	AFT	ER ASE
C6	pfhxa	10.00		98%		3%		10%
C7 C8 C9 C10 C11 C12 C13 C14	pfhpa	10.00		225%		0%	5%	
	pfoa	10.00		188%		14%		9%
	pfna	10.00		92%		98%		24%
	pfda	10.00		9%		192%		43%
	pfuda	10.00		1%		106%		61%
	pfdoa	10.00		0%		44%		67%
	pftrda	10.00		0%		38%		80%
	pfteda	10.00		0%		0%		92%

PFAS results using ASE 350

PFAS Recovery

Thermo Fisher SCIENTIFIC

Compound	Recovery (%)
¹³ C ₄ -PFBA	71
¹³ C ₅ -PFPeA	93
¹³ C ₅ -PFHxA	97
¹³ C ₄ -PFHpA	96
¹³ C ₈ -PFOA	94
¹³ C ₉ -PFNA	104
¹³ C ₆ -PFDA	99
¹³ C ₇ -PFUdA	95
¹³ C ₂ -PFDoA	97
¹³ C ₂ -PFTeDA	108

Compound	Recovery (%)
¹³ C ₃ -PFBS	98
¹³ C ₃₋ PFHxS	95
¹³ C ₈ -PFOS	91
¹³ C ₃ -HFPODA	56
² H ₃ -NMEFOSAA	93
² H ₃ -NETFOSAA	90
¹³ C ₈ -FOSA	92
¹³ C ₂ -4:2FTS	110
¹³ C ₂ -6:2FTS	93
¹³ C ₂ -8:2FTS	98

- Excellent Recoveries between 71% and 110%
- Only exception is HFPO-DA;

Spike level 400 ng/g 400 ng/g 20 ng/g Spike level 20 ng/g 1 ng/g spike 1 ng/g spike batch spike spike batch spike spike Units Units ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g **PFBA** 0.01 0.01 0.05 0.05 NETFOSAA n.d. n.d. n.d. n.d. **PFPeA** n.d. n.d. n.d. n.d. n.d. FOSA n.d. n.d. n.d. 0.04 PFHxA 0.01 0.03 0.01 PFBS n.d. n.d. 0.01 n.d. **PFHpA** n.d. 0.02 0.01 n.d. **PFPeS** n.d. n.d. n.d. n.d. **PFOA** 0.01 0.01 0.04 0.04 **PFHxS** n.d. n.d. n.d. n.d. **PFNA** n.d. n.d. n.d. n.d. **PFHpS** n.d. n.d. n.d. n.d. **PFDA** n.d. n.d. n.d. n.d. PFOS n.d. n.d. n.d. n.d. **PFUdA** n.d. n.d. n.d. n.d. PFNS n.d. n.d. n.d. n.d. **PFDoA** n.d. n.d. n.d. n.d. PFDS n.d. n.d. n.d. n.d. PFTRDA n.d. n.d. n.d. n.d. 4:2FTS n.d. n.d. n.d. n.d. **PFTEDA** n.d. n.d. n.d. n.d. 6:2FTS n.d. n.d. n.d. n.d. **NMEFOSAA** n.d. n.d. n.d. 8:2FTS n.d. n.d. n.d. n.d. n.d.

Blanks are very clean Very little background PFAS

Analysis of Blanks

Spike level	1 ng/g	5 ng/g	20 ng/g	100 ng/g	400 ng/g	Slope	r²
PFBA	0.979	5.05	21.7	101.0	408	1.020	1.000
PFPeA	1.035	5.22	22.0	101.4	423	1.058	1.000
PFHxA	1.024	5.15	22.1	102.4	429	1.073	1.000
PFHpA	0.985	5.28	22.4	99.2	423	1.056	1.000
PFOA	1.02	5.02	22.1	100.7	425	1.062	1.000
PFNA	1.032	5.21	21.8	102.6	426	1.064	1.000
PFDA	1.000	5.06	21.5	100.5	428	1.071	1.000
PFUdA	0.982	5.01	22.6	96.8	418	1.044	1.000
PFDoA	1.05	5.43	23.5	77.3	339	0.841	0.999
PFTRDA	0.567	3.65	15.5	45.4	200	0.496	0.998
PFTEDA	1.076	5.57	23.9	76.6	317	0.786	0.999
NMEFOSAA	1.13	4.86	22.8	97.2	368	0.915	1.000
NETFOSAA	1.097	5.18	19.5	117.0	424	1.061	0.999
FOSA	0.991	5.16	21.7	93.0	438	1.097	0.998
PFBS	0.966	5.14	22.4	104.6	453	1.133	1.000
PFPeS	0.915	4.93	21.1	99.6	433	1.084	1.000
PFHxS	0.945	4.98	21.6	110.6	451	1.129	1.000
PFHpS	0.976	4.55	22.8	111.4	467	1.169	1.000
PFOS	1.076	6.14	20.3	108.2	468	1.172	1.000
PFNS	0.893	5.51	21.4	107.1	462	1.156	1.000
PFDS	0.999	5.54	20.8	104.4	447	1.119	1.000
4:2FTS	1.129	5.89	22.2	57.8	272	0.672	0.997
6:2FTS	1.128	6.19	21.8	89.2	430	1.074	0.998
8:2FTS	1.149	5.43	21.0	79.8	384	0.958	0.998

Method Linearity

Conclusions

- Accelerated solvent extraction with ASE 350 is an excellent preparation method for PFAS soil analysis
 - Sonication is inadequate for extraction of long-chain PFAS from soil
- Accelerated solvent extraction can extract a variety of PFAS
 - acids
 - sulfonates
 - fluorotelomer sulfonates
 - sulfonamide compounds
- Better recovery, wide linear range (1 to 400 ppb) and low carryover

Collaborators: Matthew S. MacLennan, Daniel Ng, and David Hope

Thank you!

Thank you for your time and attention!

Questions?